Weighted Support Association Rule Mining using Closed Itemset Lattices in Parallel
نویسندگان
چکیده
In this paper, we propose a new algorithm which associates weight to each item in the transaction database based on the significance of the corresponding item. Weighted support is calculated using the weight and the frequency of occurrence of the item in the transactions. This weighted support is used to find the frequent itemsets. We partition the database among ‘N’ processors and generate closed frequent itemsets in parallel. The parallel algorithm used minimizes communication by exchanging only weighted supports among the processors. We generate closed frequent itemsets to reduce the number of itemsets and also as all frequent itemsets can be obtained from closed frequent itemsets, we are not losing any interesting and significant itemsets. The performance of the proposed algorithm is compared to count distribution algorithm in terms of scaleup, speedup, sizeup and is shown that the proposed algorithm performs better.
منابع مشابه
Mining Non- Redundant Frequent Pattern in Taxonomy Datasets using Concept Lattices
In general frequent itemsets are generated from large data sets by applying various association rule mining algorithms, these produce many redundant frequent itemsets. In this paper we proposed a new framework for Non-redundant frequent itemset generation using closed frequent itemsets without lose of information on Taxonomy Datasets using concept lattices. General Terms Frequent Pattern, Assoc...
متن کاملAn Efficient Method for Mining Frequent Weighted Closed Itemsets from Weighted Item Transaction Databases
1 Division of Data Science, Ton Duc Thang University, Ho Chi Minh, Viet Nam 4 2 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh, Viet Nam 5 [email protected], [email protected] 6 7 Abstract: In this paper, a method for mining frequent weighed closed itemsets (FWCIs) 8 from weighted item transaction databases is proposed. The motivation for FWCIs is that 9 frequent ...
متن کاملA Survey on Moving Towards Frequent Pattern Growth for Infrequent Weighted Itemset Mining
Data Mining and knowledge discovery is one of the important areas. In this paper we are presenting a survey on various methods for frequent pattern mining. From the past decade, frequent pattern mining plays a very important role but it does not consider the weight factor or value of the items. The very first and basic technique to find the correlation of data is Association Rule Mining. In ARM...
متن کاملWeighted Itemset Mining from Bigdata using Hadoop
Data items have been extracted using an empirical data mining technique called frequent itemset mining. In majority of theapplication contexts items are enriched with weights. Pushing an item weights into the itemset extraction process, i.e., mining weighted itemsets rather than traditional itemsets, is an appealing research direction. Although many efficient weighteditemset mining algorithms a...
متن کامل